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Abstract - A new Neuro-Space Mapping (Neuro-SM) 
approach is presented enabling the space mapping (SM) 
concept to he applied to nonlinear device modeling and large 
signal circuit simulation. Suppose that an existing device 
model (namely, the coarse model) cannot match the actual 
device behavior (namely, the tine model). Using the proposed 
technique, the voltage and current signals between the coarse 
and the fine device models are mapped by a neural network. 
This mapping automatically modifies the behavior of the 
coarse model such that the mapped model accurately matches 
the actual device behavior. New training methods for such 
mapping neural networks are proposed. Examples of SiGe 
HBT and GaAs MESFET modeling and use of the models in 
harmonic balance simulation demonstrate that Neuro-SM is a 
systematic method to allow us to exceed the present 
capabilities of the existing device models. 

I. 1NTR0DUcTT0N 

Artificial Neural Networks (ANN) [l]-[3] and Space 
Mapping (SM) 141 are two recent developments in the 
microwave CAD area to address the growing challenges in 
modeling, simulation and optimization. Neural network 
computation is fast and it can be trained from data, 
allowing model development even when component 
formulas ax unavailable [l]. Space mapping exploits 
mathematical link between fast yet approximate (coarse) 
models and accurate yet expensive (fme) models to 
achieve circuit design with the speed of coarse models and 
the accuracy of fine models [4]. Recently space mapping 
neuromodeling technique, combining neural networks with 
space mapping [5] was developed using neural networks to 
map the coarse model to fine model. The technique 
presently can be applied to passive modeling or small- 
signal device modeling, achieving fast and accurate 
models for such as bends, high temperature 
superconductor filters and embedded passives in 
multilayer printed circuits [5]. 

This paper expands the concept of space mapping 
neuromodeling to cover a new direction, i.e., large-signal 
dynamic nonlinear device modeling. Nonlinear device 
modeling is an important area of CAD, and many device 
models have been developed [6,7]. Due to rapid 
technology development in semiconductor industry, new 

devices constantly evolve. Models that were developed to 
tit previous devices may not tit new devices well. There is 
an ongoing need for new models. The challenges for CAD 
researchers are not only to develop more models, but also 
to innovate new CAD methods, so the task of developing 
models becomes more efficient and systematic. The latter 
aspect is the subjtct of this paper. 

This paper presents a nearo-space mapping (Neuro-SM) 
technique, using a novel formulation of space mapping, to 
automatically modify the behavior of existing device 
models such that after modification the model accurately 
match new device data. This is made possible by a 
proposed neural network mapping to modify the voltage 
and current signals in the model. Examples of SiGe HBT 
and GaAs MESFET modeling and harmonic balance (HB) 
simulation demonstrate that the proposed Near&M is a 
systematic method allowing us to exceed the present 
capabilities of existing device models. 

II. PFCOWSED NEURO-SM FOR NONLINEAR DEVICE 

MODELMG 

Coarse Model and Fine Model: Suppose that the 
existing/available models give only rough approximation 
of our device, and cannot accurately match the actual 
device data. Let the existing nonlinear device model be 
called ihe coarse model. The fine model in our case is only 
a fictitious model implied by actual device data from 
measurement or detailed/expensive device simulator. 

Coarse Signal and Fine Signal: We use a 2.port device 
notation for our explanation. Let the terminal currents and 
voltage signals of the coarse device model be defined as v, 
= [v~,, vJT and i, = [i,,, iJT, respectively. Let the 
terminal currents and voltages of the fine model be defined 
as v, = [v,,, vPIT, and i/ = [i,,, inIT, respectively. v, and i, 
are called coarse signals and VI and i, are called fine 
signals. 

Neuro-SM: Fig. 1 shows the proposed Neuro-SM 
nonlinear 2-port network structure. The voltage signals for 
the overall model, i.e., v,, and v0 are not sent to the coarse 
model directly. Instead they are mapped (modified) into 
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the voltages in the coarse model such that the modified 
coarse model response (say, i,) will match the fine signal. 
Since the precise equation for this mapping is unknown, 
and the mapping in general can be nonlinertr, a neural 
network becomes a logical choice as the realization of ihe 
mapping function. The input neurons for the neural 
network receives tine voltage signals v~, vP The output 
neurons provides the mapped voltage signals for the coarse 
model, i.e., v, = fA,&y, w), where fANN represents the 
neural network and w is a vector containing all internal 
weights of the neural network. This neural network is then 
implemented as the functions in the voltage controlled 
voltage sources in our model shown in Fig. 1. We use 
current controlled current sources to pass i, to 4, in order 
to make the Neuro-SM model consistent with Kirchhoff’s 
Laws as seen from the external terminals of the overall 
Neuro-SM model, which includes the coame nonlinear 
model, all the controlled sources, and the neural network. 

_--------- 
me Signal 

,.-- ----------I -. 

I NeuroSM Nonlinear Model I 

Fig I. General 2-port Neuro-SM nonlinear model. 

Cases of Mapping: For the Neuro-SM model to 
perform accurately, the neural network should be trained. 
However, available transistor data may not be directly in 
the form of instantaneous voltages (coarse and tine) for the 
input-output neurons as required by regular neural network 
training algorithms. Here we establish the connections of 
the proposed mapping with typical types of transistor data, 
such as DC, bias-dependent S-parameters and large-signal 
harmonic data, in order to formulate a new neural network 
training approach. 

The proposed Neuro-SM model is a full large-signal 
nonlinear model. The mapping for DC voltages V,,, and 
V,,, is directly achieved by the neural network as: 

V c.DC =hNhwpG w). (1) 
The small signal S-parameters ‘are mapped via the 
mapping relationship of the Y matrices between the coarse 
model Y, and fine model Y, , as 

Y,=Y=.r~f~~~-,w)l",=",~,~I. (2) 

where the derivative offANN is obtained at bias point VLB,a 
using the adjoint neural network in Fig. 2. As for large- 
signal case, the mapping of harmonic signals between the 
co.wse model V, (ko) and tine model V,(h) is: 

where o is .fundamental frequency, NX is number of 
harmonics, T is time interval and Nr is the number of time 
points. w, is defined a~ e-jzr. 

Training of Neuro-SM Model: The overall training 
has two phases, initialization and formal training. In the 
initialization phase, we first initialize the neural network 
by a preliminary training to learn unit mapping, i.e., v, = 
vfi Training data can be obtained by assigning [v~J, v,~] in a 
grid form across the entire operation range of the device. 
This initialization phase guarantees that the overall Neuro- 
SM model is equal to the coarse model, before actual 
device data is used in the formal training of the neural 
network. In the formal training phase, the neural network 
internal weights w are adjusted such that the Neuro-SM 
model matches device data better than the coarse model 
does. In this way, for a given device model, the proposed 
Neuro-SM model automatically exceeds or at least equals 
the performance of the given coarse model. 

(a) (b) 
Fig. 2. (a) Original neural network v,=h,&v,, w) and (b) 
adjoint neural network in Neuro-SM. (a) is used for DC and 
large-signal mapping and (b) is used for small-signal mapping. 
Vector w contains all weights w[“,~ and w”$, where i, k, j are 
indices of neurons in the input, hidden and output layers in (a). 
The adjoint neural network structure corresponds to a flip of the 
original neural network between inputs and outputs. The output 
of adjoint neural network is *tilhf,where i=l or 2 if the 
adjoint inputs are [I, 01 or 10, 1 I, respectwely. 

The overall training error can be the total difference 
between all available device data (such as DC and bias- 
dependent S-parameters) and the Neuro-SM model. The 
derivative of the training ermr versus neural network 
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weights needed by neural network training algorithms is 
obtained by differentiating the mapping relationships of 
(l)-(3) with the derivative part in the coarse model done 
through circuit sensitivity techniques and the derivative 
pm for faNN done through adjoint neural network 
sensitivity [S]. 

Use of Neuro-SM Model: After training, the Neuro- 
SM model can be used by user or circuit simulator. The 
neural network internal weights w are fixed. The 
voltage/current relationship of the model required by user 
or circuit simulator is that between v, and 9, which is 
obtained from New-SM model through the mapping of 
coarse model signals as defined in Figure 1. 

III. EXAMPLES 

A. New-o-SMNonlinear Model for SiGe HBTDevice 

This example shows how Neuro-SM works in a simple 
DC case of a SiGe HBT device modeling, with data from 
measurement [9]. The coarse model used is a standard 
Curtice model [lo]. The internal parameters of the coarse 
model are first optimized. However, the coarse model at 
its best provides only approximation of the device and 
lacks the complicated details seen in the device data in 
Fig. 3. We applied the proposed Neuro-SM technique. The 
base current and collector voltage are mapped onto the 
coarse model, and these mapped signals then excite the 
coarse model, resulting in an improved value of collector 
current. Simulation result comparison is shown in Fig 3. 
The neural network used 55 hidden neurons. In general, 
fewer (more) hidden neurons are needed if the coarse 
model is good (poor). This example demonstrates that 
using Neuro-SM technique, a basic Curtice model 
originally developed for GaAs FETs can now be 
automatically extended beyond its original limitation to 
match the highly irregular nonlinear behavior in the SiGe 
HBT example. 

“CB w 
Fig. 3. 1-V comparison of SiGe HBT device models. 

B. Neuro-SM Nonlinear Model for GaAs FET Device 

This example illustrates a full large signal Neuro-SM 
model trained with both DC and bias dependent S- 
parameter data. The fine device data is generated from an 
ADS internal GaAs FET model [ll, 121. The Curtice 
cubic model [lo] is used as coarse model. There are clear 
differences between the coarse model and the fme device 
data, which cannot disappear even after the parameters in 
the coarse model are optimized as much as possiblk. We 
will use our proposed New-SM to automatically adjust 
the coarse model to match the fine device data. Fig. 4 
shows the structure of this Neuro-SM nonlinear model. 

Fig. 4. Structure of Neuro-SM GaAs FET Nonlinear Model 

Training was done using both DC and S-parameter data 
at 150 bias points in the range (Vg: -1 to OV, Vd: 0 to 5V, 
and frequency: 1 to 20 GHz). The number of hidden 
neurons used was 10. After training, we compare the 
Nemo-SM nonlinear model with the coarse model and the 
original ADS data. The result is plotted in Fig.& showing 
clear improvements using Neuro-SM over the coarse 
model. For comparison pup&e, we also trained a pure 
neural network model (device entirely modeled by 
dynamic neural network (DNN) [13] without use of any 
equivalent circuit). Table I gives the comparison of 
accuracy and extrapolation capability between the models. 
Two sets of data are used with 10% and 20% derivation 
beyond bias and frequency range for extrapolation test. 
The proposed Neuro-SM model outperforms the pure 
neural network model when the model is used outside its 
training range. 

TABLE I 
TEST ERROR (%) COMPARISON 

Model Type 

Within training range Efiz~rp 

Before AflU 
training 

training range 
training (~oo/~~oo~J 

Pure Neural Model 133.34 1.38 36.25/43.81 
Coarse Model 10.57 10.57 10.36/10.44 

Neuro-SM Model 10.57 1.46 1.87/2.03 
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Fig. 5. S-parameter comparison of GaAs FET model at 4 
different biases. 

C. Use of Nan-SM.&de1 in Amplifier Design 

In this example, we use the trained Neuo-SM GaAs 
F!3T nonlinear model of section IILB in a three-stage 
power amplitier simulation and optimization. The power 
amplifier is from [8]. We paformed large-signal harmonic 
balance simulation of the amplifier, and the result matches 
well with the original ADS solutions, show” io Fig. 6. This 
verities the validity of the large-signal behavior of the 
proposed Neuro-SM device model. To further demonstrate 
the use of the model, we also performed yield optimization 
and Monte-Carlo analysis with loo0 statistical outcomes 
of the three-stage amplifier using the Neuro-SM models 
with 53 geometrical parameters of all the passive 
components in the amplifier as variables. The yield 
evaluated after optimization using coarse model and the 
proposed model is 26% and 70%, respectively. The 
original ADS optimal yield is 73%. This further cortfiis 
that the Nemo-SM model can be used to help statistical 
analysis and optimization. 

.cMgma, ADS 

@I @I 0’) 0’) 
Fig. 6. Fig. 6. Time domain response (a), and frequency domain Time domain response (a), and frequency domain 
harmonic balance response (b) of the three stage amplifier using harmonic balance response (b) of the three stage amplifier using 
original ADS solution, Nenro-SM model and coarse model. original ADS solution, Nenro-SM model and coarse model. 

IV. CONCLUSION 

By modifying the voltage/current signals fed to the 
model using Neuro-SM. we can automatically improve an 
existing model of coarse accuracy into a new model of fme 
accuracy. For the fmt time, computer-based automatic 
modification of existing large-signal device models now 
becomes achievable, avoiding otherwise trial and error 
based manual modification of models. This work is also 
aimed at efficient and automatic updating of nonlinear 
device model libraries as new semiconductor technologies 
continue to evolve. 
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