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Abstract — A new Neuro-Space Mapping (Neuro-SM)
approach is presented enabling the space mapping (SM)
concept to be applied to nonlinear device modeling and large
signal circuit simulation. Suppose that an existing device
model (namely, the coarse model) cannot match the actual
device behavior {namely, the fine model). Using the proposed
technique, the voltage and current signals between the coarse
and the fine device models are mapped by a neural network.
This mapping automatically modifies the behavior of the
coarse model such that the mapped model accurately matches
the actual device behavior. New training methods for such
mapping neural networks are proposed. Examples of SiGe
HBT and GaAs MESFET modeling and use of the models in
harmonic balance simulation demonstrate that Neuro-SM is a
systematic method to allow us to exceed the present
capabilities of the existing device models.

1. INTRODUCTION

Artificial Neural Networks (ANN) [13-[3] and Space
Mapping (SM) [4] are two recent developments in the
microwave CAD area to address the growing challenges in
modeling, simulation and optimization. Neural network
computation is fast and it can be trained from data,
allowing model development even when component
formulas are unavailable [1]. Space mapping exploits
mathematical link between fast yet approximate (coarse)
medels and accurate yet expensive (fine) models to
achieve circuit design with the speed of coarse models and
the accuracy of fine models [4]. Recently space mapping
neuromodeling technique, combining neural networks with
space mapping [5] was developed using neural networks to
map the coarse model to fine model. The technique
presently can be applied to passive modeling or small-
signal device modeling, achieving fast and accurate
models for such as bends, high temperature
superconductor filters and embedded passives in
multilayer printed circuits [5].

This paper expands the concept of space mapping
neuromodeling to cover a new direction, ie., large-signal
dynamic nonlincar device modeling. Nonlinear device
modeling is an important area of CAD, and many device
models have been developed [6,7]. Due to rapid
technology development in semiconductor industry, new
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devices constantly evolve. Models that were developed to
fit previous devices may not fit new devices well. There is
an ongoing need for new models. The challenges for CAD
researchers are not only to develop more models, but also
to innovate new CAD methods, so the task of developing
models becomes more efficient and systematic. The latter
aspect is the subject of this paper.

This paper presents a neuro-space mapping (Neuro-SM)
technique, using a novel formulation of space mapping, to
automatically modify the behavior of existing device

models such that after modification the model accurately -

match new device data. This is made possible by a
proposed neural network rnépping to modify the voltage
and current signals in the model. Examples of SiGe HBT
and GaAs MESFET modeling and harmonic balance (HB)
simulation demonstrate that the proposed Neuro-SM is a
systematic method allowing us to exceed the present
capabilities of existing device models.

II. PROPOSED NEURO-SM FOR NONLINEAR DEVICE
MODELING

Coarse Model and Fine Model: Suppose that the
existing/available models give onty rough approximation
of our device, and cannot accurately match the actual
device data. Let the existing nonlinear device model be
called the coarse model. The fine model in our case is only
a fictitious model implied by actual device data from
measurement or detailed/expensive device simulator.

Coarse Signal and Fine Signal: We use a 2-port device
notation for our explanation. Let the terminal currents and
voltage signals of the coarse device model be defined as v,
= [v., vd]T and i = [i., i,,z]T, respectively., Let the
terminal currents and voltages of the fine model be defined
as vy = [vy, vpl', and i = [ig, ip]", respectively. v, and i,
are called coarse signals and v, and # are called fine
signals. .

Neuro-SM: Fig. 1 shows the proposed Neuro-SM
nonlinear 2-port network structure. The voltage signals for
the overall model, i.e., v; and v, are not sent to the coarse
model directly. Instead they are mapped (modified) into
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the voltages in the-coarse model such that the modified
coarse model response (say, i;) will match the fine signal.
Since the precise equation for this mapping is unknown,
and the mapping in general can be nonlinear, a neural
network becomes a logical choice as the realization of the
mapping function. The input neurons for the neural
network receives fine voltage signals vy, v The output
neurons provides the mapped voltage signals for the coarse
model, i.e., v, = fuwl¥s w), where fuuw represents the
neural network and w is a vector containing all internal
weights of the neural network. This nevral network is then
implemented as the functions in the voltage controlled
voltage sources in our model shown in Fig. 1. We use
current controlled current sources to pass i, to i, in order
to make the Neuro-SM model consistent with Kirchhoff’s
Laws as seen from the external terminals of the overall
Neuro-SM model, which includes the coarse nonlinear
model, all the controlled sources, and the neural network.
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Fig1.  General 2-port Neuro-SM nonlinear model.

Cases of Mapping: For the Neuro-SM model to
perform accurately, the neural network should be trained.
However, available transistor data may not be directly in
the form of instantaneous voltages (coarse and fine) for the
input-output neurons as required by regular neural network
training algorithms. Here we establish the connections of
the proposed mapping with typical types of transistor data,
such as DC, bias-dependent S-parameters and large-signal
harmenic data, in order to formulate a new neural network
training appreach,

The proposed Neuro-SM model is a fuli large-signal
nonlinear model. The mapping for DC voltages V,p- and
V;nc is directly achieved by the neural network as:

Veoc = FandVipe, w). 1

The small signal S-parameters -are mapped via the
mapping relationship of the Y matrices between the coarse
model ¥, and fine model ¥, as
T
o sun (Vs W)
v,

-Y, -

c

(2)

V=V bia
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where the derivative of f,uy is obtained at bias point Vg,
using the adjoint neural network in Fig. 2. As for large-
signal case, the mapping of harmonic signals between the
coarse model V. (kw) and fine model V {/w) is:

Np—

1
V. (ka) =Ni S Fow

T n=0

Ny
[va () W;(Iw)(nT)‘ w} . W](ka)(nT)
=0

&)

where @ is .fundamental frequency, Ny is number of
harmonics, T is time interval and N7 is the number of time

k=01, .., Ny

points. W,, is defined as e/,

Training of Nearo-SM Meodel: The overall training
has two phases, initialization and formal training. In the
initialization phase, we first initialize the neural network
by a preliminary training to learn unit mapping, i.e., ¥,
v Training data can be obtained by assigning [v,, v.»] in a
grid form across the entire operation range of the device.
This initialization phase guarantees that the overall Neuro-
SM model is equal to the coarse model, before actual
device data is used in the formal training of the neural
netwerk. In the formal training phase, the neural network
internal weights w are adjusted such that the Neuro-SM
model matches device data better than the coarse model
does. In this way, for a given device model, the proposed
Neuro-SM model automatically exceeds or at least equals
the performance of the given coarse model.

@

(a) Original neural network v=fi(vs w) and (b)
adjoint neural network in Neuro-SM. (a} is used for DC and
large-signal mapping and (b) is used for small-signal mapping.

(b)
Fig. 2.

Vector w contains all weights w'”y and w'?y, where i, k, j are

indices of neurons in the input, hidden and output layers in (a).
The adjoint neural network structure corresponds to a flip of the
original neural network between inputs and outputs. The output
of adjoint neural network is & /& s where i=1 or 2 if the
adjoint inputs are [1, 0] or [0, 1], respectively.

The overall training error can be the total difference
between all available device data (such as DC and bias-
dependent S-parameters) and the Neuro-SM model. The
derivative of the training error versus neural network



weights needed by neural network training algorithms is
obtained by differentiating the mapping relationships of
(1)-(3) with the derivative part in the coarse model done
through circuit sensitivity techniques and the derivative
part for fiyv done through adjoint neural network
sensitivity [8]. '

Use of Neuro-SM Model: After training, the Neuro-
SM model can be used by user or circuit simulator. The
neural network internal weights w are fixed. The
voltage/current relationship of the model required by user
or circuit simulator is that between v, and i, which is
obtained from Neuro-SM modei through the mapping of
coarse model signals as defined in Figure 1.

II1. EXAMPLES

A. Neuro-SM Nonlinear Model for SiGe HBT Device

This example shows how Neuro-SM works in a simple
DC case of a SiGe HBT device modeling, with data from
measurement [9], The coarse model used is a standard
Curtice model [10]. The internal parameters of the coarse
model are first optimized. However, the coarse model at
its best provides only approximation of the device and
lacks the complicated details seen in the device data in
Fig. 3. We applied the proposed Neuro-SM technique. The
base current and collector voltage are mapped onto the
coarse model, and these mapped signals then excite the
coarse model, resulting in an improved value of collector
current. Simulation result comparison is shown in Fig 3.
The neural network uwsed 55 hidden neurons. In general,
fewer (more) hidden neurons are needed if the coarse
model is good {(poor). This example demonstrates that
using Neuro-SM technique, a basic Curtice model
originally developed for GaAs FETs can now be
automatically extended beyond its original limitation to
match the highly irregular nomlinear behavior in the SiGe
HBT example.
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Fig.3. -V comparison of SiGe HBT device models.
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B. Neuro-SM Nownlinear Model for Gads FET Device

This example illustrates a full large signal Neuro-SM
model trained with both DC and bias dependent S-
parameter data. The fine device data is generated from an
ADS internal GaAs FET model {11, 12]. The Curtice
cubic model [10] is used as coarse model. There are clear
differences between the coarse model and the fine device
data, which cannot disappear even after the parameters in
the coarse model are optimized as much as possibie. We
will use our proposed Neuro-SM to automatically adjust
the coarse model to match the fine device data. Fig. 4
shows the structure of this Neuro-SM nonlinear model.

Gate signal:
coarse

Drain signal:
coarse

Drain signal;
fing

fine

Training was done using both DC and S-parameter data
at 150 bias points in the range (Vg: -1 to OV, Vd: 0 1o 5V,
and frequency: 1 te 20 GHz). The number of hidden
neurons used was 10. After training, we compare the
Neuro-SM nonlinear model with the coarse model and the
original ADS data. The result is plotted in Fig.5, showing
clear improvements using Neuro-SM over the coarse
model. For comparison purpose, we also trained a pure
neural network model (device entirely modeled by
dynamic neural network (DNN) [13] without use of any
equivalent circuit). Table I gives the comparison of
accuracy and extrapolation capability between the models.
Two sets of data are used with 10% and 20% derivation
beyond bias and frequency range for extrapolation test.
The proposed Neuro-SM model outperforms the pure
neural network model when the model is used outside its
training range.

TABLE
TEST ERROR (%) COMPARISON
Within training range Extll;apola;ion
eyon

Model Type Before After | training range

fraining training (10%/20%)

Pure Neural Model] 133.34 1.38 36.25/43.81

Coarse Model 10.57 10.57 10.36/10.44

Neuro-SM Model 10.57 1.46 1.87/2.03
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Fig. 5. S-parameter comparison of GaAs FET model at 4
different biases.

C. Use of Neuro-SM Model in Amplifier Design

In this example, we use the trained Neuro-SM GaAs
FET nonlinear model of section ITIL.B in a three-stage
power amplifier simulation and optimization. The power
amplifier is from [8]. We performed large-signal harmonic
balance simulation of the amplifier, and the result matches
well with the criginal ADS solutions, shown in Fig. 6. This
verifies the validity of the large-signal behavior of the
proposed Neuro-SM device model. To further demonstrate
the use of the model, we also performed yield optimization
and Monte-Carlo analysis with 1000 statistical outcomes
of the three-stage amplifier using the Neuro-SM models
with 53 geometrical parameters of all the passive
components in the amplifier as variables. The yield
evaluated after optimization using coarse model and the
proposed model is 26% and 70%, respectively. The
original ADS optimal yield is 73%. This further confirms
that the Neuro-SM model can be used to help statistical
analysis and optimization.
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Fig.6. Time domain response (a), and frequency domain

harmonic balance response (b) of the three stage amplifier using
original ADS solution, Neuro-SM model and coarse model.

IV. CoNCLUSION

By modifying the voltage/current signals fed to the
model using Neuro-SM, we can automatically improve an
existing model of coarse accuracy into a new model of fine
accuracy. For the first time, computer-based automatic
modification of existing large-signal device models now
becomes achievable, avoiding otherwise trial and error
based manual modification of models. This work is also
aimed at efficient and automatic updating of nonlinear
device model libraries as new semiconductor technologies
continue to evolve.
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